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Cardiac Channel Molecular Autopsy:
Insights From 173 Consecutive Cases of

Autopsy-Negative Sudden Unexplained Death
Referred for Postmortem Genetic Testing
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Carla M. Haglund, HS; and Michael J. Ackerman, MD, PhD

Abstract

Objective: To perform long QT syndrome and catecholaminergic polymorphic ventricular tachycardia cardiac channel
postmortem genetic testing (molecular autopsy) for a large cohort of cases of autopsy-negative sudden unexplained
death (SUD).
Methods: From September 1, 1998, through October 31, 2010, 173 cases of SUD (106 males; mean � SD age,
18.4�12.9 years; age range, 1-69 years; 89% white) were referred by medical examiners or coroners for a cardiac
channel molecular autopsy. Using polymerase chain reaction, denaturing high-performance liquid chromatography,
and DNA sequencing, a comprehensive mutational analysis of the long QT syndrome susceptibility genes (KCNQ1,
KCNH2, SCN5A, KCNE1, and KCNE2) and a targeted analysis of the catecholaminergic polymorphic ventricular
tachycardia type 1–associated gene (RYR2) were conducted.
Results: Overall, 45 putative pathogenic mutations absent in 400 to 700 controls were identified in 45 autopsy-
negative SUD cases (26.0%). Females had a higher yield (26/67 [38.8%]) than males (19/106 [17.9%]; P�.005).
Among SUD cases with exercise-induced death, the yield trended higher among the 1- to 10-year-olds (8/12 [66.7%])
compared with the 11- to 20-year-olds (4/27 [14.8%]; P�.002). In contrast, for those who died during a period of
sleep, the 11- to 20-year-olds had a higher yield (9/25 [36.0%]) than the 1- to 10-year-olds (1/24 [4.2%]; P�.01).
Conclusion: Cardiac channel molecular autopsy should be considered in the evaluation of autopsy-negative SUD.
Several interesting genotype-phenotype observations may provide insight into the expected yields of postmortem
genetic testing for SUD and assist in selecting cases with the greatest potential for mutation discovery and directing
genetic testing efforts.
© 2012 Mayo Foundation for Medical Education and Research � Mayo Clin Proc. 2012;87(6):524-539
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S udden cardiac death (SCD) is a major cause of
death in developed countries. An estimated
300,000 to 400,000 individuals die suddenly

each year in the United States, with most deaths
involving elderly people.1 In comparison, sudden
death in infants, children, adolescents, and young
adults is relatively uncommon, with an incidence
between 1.3 and 8.5 per 100,000 patient-years.2

Nevertheless, an estimated 1000 to 5000 individ-
uals between 1 and 35 years of age die suddenly
each year. Fortunately, the cause and manner of
death can be explained in many cases by a com-
prehensive medicolegal investigation that in-
cludes an autopsy.3,4

A conventional autopsy investigation may de-
tect a noncardiac basis for the sudden death, such
as pulmonary embolism, asthma, or epilepsy.
However, SCD is the most common cause of sud-
den death in young people, with structural car-
diovascular abnormalities often identifiable at au-

topsy.4,5 Nevertheless, standard forensic autopsy
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nvestigations often fail to reveal the underlying
ause of the SCD. In fact, even after gross and
istologic examination, at least 3% and perhaps as
uch as 53% of sudden deaths involving previ-

usly healthy children, adolescents, and young
dults have no identifiable morphological abnor-
alities found at autopsy, remain unexplained,

nd are classified as autopsy-negative sudden un-
xplained death (SUD).3,4,6-8

Long QT syndrome (LQTS) and catecholamin-
rgic polymorphic ventricular tachycardia (CPVT)
re potentially lethal, heritable channelopathies as-
ociated with structurally normal hearts that leave
o evidentiary clue to be gleaned during a compre-
ensive medicolegal autopsy. This absence of evi-
ence leaves medical examiners, coroners, and fo-
ensic pathologists to only surmise that a lethal
rrhythmia may have precipitated the SUD.3,9-13

However, postmortem genetic testing, specifically a
cardiac channel molecular autopsy, may potentially
From the Division of Car-
diovascular Diseases (D.J.T.,
A.M.-D., M.L.W., C.M.H.,
M.J.A.) and Division of Pedi-
atric Cardiology, Depart-
ment of Molecular Pharma-
cology and Experimental
Therapeutics (M.J.A.), and
Windland Smith Rice Sud-
den Death Genomics Labo-
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elucidate such a pathogenic mechanism and estab-
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lish probable cause and manner for an individual’s
death.14-17 In fact, recent guidelines for autopsy in-
vestigations of SUD in young people have suggested
that postmortem cardiac channel genetic testing
should become the new standard of care in the eval-
uation of SUD cases.18-20

Since the availability of preliminary case reports
of molecular autopsies,15 investigators have sought
to determine the spectrum and prevalence of patho-
genic cardiac ion channel mutations in the now 9
unique molecular autopsy series of SUD cases, pro-
viding a range of 15% to 35% mutation detection
yield when testing for the 3 major LQTS susceptibil-

TABLE 1. Clinical Characteristics of the Autopsy-Nega

Characteristic All

No. of individuals 1

Sex, No.

Male 1

Female

Age at SUD (y), mean � SD (range)

Overall 18.4�12

Females 18.8�13

Males 18.2�13

Reported ethnicity, No.

White 1

Black

Hispanic

Asian

Unknown

Events at SUD

Sleep 70

Nonspecific 52

Exertion 46

Auditory 1

Emotion 4

Personal history before SUD

Positive 42

Negative 124

Unknown 7

Family history of cardiac events

Positive 34

Negative 127

Unknown 12

Family history of SCD 20

Personal or family history

Seizures 12

Syncope 25

a Data are presented as No. (percentage) unless indicated oth

syndrome; SUD � sudden unexplained death.
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ity genes (KCNQ1, KCNH2, SCN5A) and/or the ma-
jor CPVT-associated gene (RYR2).17,21-28 However,
hese 9 molecular autopsy series, now totaling only
07 cases (49 of which we have reported on previ-
usly), mostly represent very small case series (�20

cases), used a largely unreliable source (formalin-
fixed paraffin-embedded tissue) of high-quality
DNA for comprehensive mutational analysis, or per-
formed a limited mutational analysis (ie, only as-
sessed a partial list of the major LQTS and CPVT
genes).

Given the recent guidelines for autopsy-nega-
tive SUD investigations and the relatively small co-

SUD Cohorta

LQTS-positive cases CPVT1-positive ca

25 20

8 11

17 9

-69) 17.6�9.4 (2-43) 16.5�10.2 (2-36

2) 18.11�10.4 (4-43) 18.9�11 (5-35)

9) 16.6�7.2 (3-24) 14.5�9.6 (2-36)

24 16

1 3

0 1

0 0

0 0

) 12 (48.0) 1 (5.0)

) 6 (24.0) 8 (40.0)

) 5 (20.0) 11 (55.0)

1 (4.0) 0

1 (4.0) 0

) 8 (32.0) 7 (35.0)

) 15 (60.0) 13 (65.0)

2 (8.0) 0

) 5 (20.0) 7 (35.0)

) 19 (76.0) 12 (60.0)

1 (4.0) 1 (5.0)

) 2 (8.0) 7 (35.0)

1 (4.0) 2 (10.0)

) 9 (36.0) 4 (20.0)

e. CPVT1 � catecholaminergic polymorphic ventricular tachycar
tive

cases ses Negative cases

73 128

06 87

67 41

.9 (1 ) 18.9�13.9 (1-69)

(1-5 19.3�14 (1-52)

(1-6 18.8�14 (1-69)

54 113

9 6

6 5

3 3

1 1

(40.5 57 (44.5)

(30.1 38 (29.7)

(26.6 30 (23.4)

(0.6) 0

(2.3) 3 (2.3)

(24.3 27 (21.1)

(71.7 96 (75.0)

(4.0) 5 (3.9)

(19.7 22 (17.2)

(73.4 96 (75.0)

(6.9) 10 (7.8)

(11.5 11 (8.6)

(6.9) 9 (7.0)

(14.5 12 (9.4)

erwis dia type 1; LQTS � long QT
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hort size of these previously published molecular
autopsy series, an extensive analysis to better define
the expected yield of mutation detection and per-
haps offer possible genotype-phenotype correla-
tions that may assist in guiding phenotype-directed
cost-effective mutation detection efforts in future
cases of SUD is much needed. We report the spec-
trum and prevalence of possible LQTS- and
CPVT-associated channel mutations among 173
consecutive cases of SUD that were referred by
medical examiners, coroners, and forensic pathol-
ogists from throughout North America during the
past decade for a cardiac channel molecular au-
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topsy. In an effort to guide and inform the proper
use of such postmortem genetic testing, we exam-
ined the effect of different phenotypic parameters
on the yield of LQTS and CPVT genetic testing
from the largest molecular autopsy series on SUD
published to date.

METHODS

Medical Examiner–Referred Cases of
Autopsy-Negative SUD
From September 1, 1998, through October, 31, 2010,
173 medical examiners’ cases of autopsy-negative SUD
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(106 males; mean � SD age, 18.4�12.9 years; range,
1-69 years) were referred to Mayo Clinic’s Windland
Smith Rice Sudden Death Genomics Laboratory for
a cardiac channel molecular autopsy. After receipt of
written consent from the decedent’s appropriate
next of kin for this Mayo Foundation Institutional
Review Board–approved protocol, a postmortem ge-
netic mutational analysis (ie, cardiac channel molec-
ular autopsy) was performed. The first 49 of these
173 consecutively referred cases have been reported
previously22,29 and are included here in this ex-
tended molecular autopsy series. None of the dece-
dents or their family members had an established
diagnosis of LQTS, CPVT, or any other sudden
death–predisposing cardiac condition at the time of
either their death or at enrollment for postmortem
genetic testing.

Cardiac Channel Molecular Autopsy
Genomic DNA was extracted from frozen necropsy
tissue or autopsy blood using the Puregene DNA
Isolation Kit (Qiagen Inc, Valencia, CA). Compre-
hensive coding, open reading frame, splice-site mu-
tational analysis of the entire coding region (60 ex-
ons) of the 3 major LQTS susceptibility genes
(KCNQ1, KCNH2, and SCN5A), 2 minor LQTS sus-
ceptibility genes (KCNE1 and KCNE2), and a tar-
geted molecular screen of the 64 exons (3-28, 36-
50, and 83-105) previously reported to encompass
the 3 major mutation-clustering domains of the 105
exon CPVT type 1 (CPTV1) susceptibility gene
RYR230 was performed using polymerase chain re-
action, denaturing high-performance liquid chro-
matography, and direct DNA sequencing as previ-
ously described.31

To be considered a putative, pathogenic, SUD-
associated mutation, the genetic variant had to (1)
be a nonsynonymous variant (synonymous single-
nucleotide polymorphisms were excluded from
consideration); (2) involve a highly conserved resi-
due; and (3) be absent from either more than 2600
reference alleles previously examined for LQTS
mutations or more than 800 reference alleles pre-
viously examined for RYR2 mutations32-34 and an
additional 400 reference alleles derived from 100
healthy white and 100 healthy black controls. This
latter control genomic DNA was obtained from the
Human Genetic Cell Repository sponsored by the
National Institute of General Medical Sciences and
the Coriell Institute for Medical Research (Camden,
NJ). Mutations were annotated using the single-let-
ter nomenclature whereby W379R, for example, de-
notes a nonsynonymous single-nucleotide polymor-
phism producing a missense mutation involving a
substitution of tryptophan (W) by arginine (R) at
amino acid W379R. To assess whether mutations

were sporadic or familial, direct DNA sequencing
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was used to confirm the presence or absence of the
putative mutations in DNA extracted from the par-
ents of the decedents whenever possible and after
written informed consent. Primer sequences and
polymerase chain reaction and denaturing high-per-
formance liquid chromatography conditions are
available on request.

RESULTS

Cohort Description
Demographic characteristics for this consecutively
referred SUD cohort are given in Table 1. Briefly,
there were 173 cases (106 males and 67 females;
mean � SD age, 18.4�12.9 years; range, 1-69
years; 89% white). The mean � SD ages of the males
(18.2�13 years; range, 1-69 years) and females
(18.8�13 years; range, 1-52 years) were similar.
Most (161/173 [93.1%]) were 40 years or younger
at their SUD. The circumstance (events or triggers)
surrounding the SUD was grouped into 1 of 3 cate-
gories, with the most prevalent being death during
sleep (n�70, 30 males [40.5%]), followed by a non-
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TABLE 2. Summary of Putative Channelopathic Mutations and Channelopathy-Positive SUD Casesa

Case
No. Sex Age (y) Ethnicity Gene Exon Nucleotide change

Mutation (amino acid
change)

Nonsynonymous
polymorphisms SUD event

Sentinel
event Family history

1 M 3 W KCNQ1 1 332 A�G Y111C Sleep SUD Positive for syncope

2 F 21 W KCNQ1 3 del488T L163FS/X236b T8A-KCNE2 Nonspecific Syncopec Negative

3 M 17 W KCNQ1 3 del572_576 L191FS/90 Sleep SUD Negative

4 M 20 W KCNQ1 3 592 A�G I198V Sleep SUD Negative

5 F 43 W KCNQ1 6 805 G�A G269S Exertion SUD Negative

6 M 22 W KCNQ1 6 905 C�T A302V G1886S-RYR2 Sleep Seizures Negative

7 F 8 W KCNQ1 7 935 C�T T312I Exertion SUD Positive for SCDc

8 M 24 W KCNQ1 7 1022 C�A A341E Sleep SUD Negative

9 F 17 W KCNQ1 9 1135 T�C W379Rb Emotion SUD Negative

10 F 5 W KCNQ1 15 1750 G�A G584Sb Exertion Syncope Negative

11 F 4 W KCNQ1 15 1760 C�T T587M Nonspecific SUD Negative

12 F 14 W KCNH2 3 322 T�C C108Rb V1951L-SCN5A Nonspecific SUD Positive for SCD

13 F 29 W KCNH2 4 del823T C276fsX359b Nonspecific SUDc Positive for syncope

14 F 15 W KCNH2 7 insGC1746_1747 R582FS/11b Sleep Syncope Negative

15 F 16 W KCNH2 7 del1902C T634FS/78b Sleep SUD Negative

16 F 13 W KCNH2, RYR2 9, 28 2398�5 G�T, 3321 C�T L799/SP, T1107M-RYR2 Auditory Syncope Negative

17 F 15 W KCNH2 15 3436 A�T T1146Sb Sleep Syncope Negative

18 F 16 W SCN5A 3 311 G�A R104Q Sleep SUD Negative

19 F 19 W SCN5A 6 659 C�T T220I Nonspecific SUD Negative

20 M 12 W SCN5A 7 799 A�C I267Lb Nonspecific SUD Negative

21 M 23 B SCN5A 14 2039 G�A R680H S1103Y-SCN5A Exertion SUD Negative

22 F 39 W SCN5A 23 4000 A�G I3334Vb Sleep Syncope Positive for syncope
and CA

23 F 16 W SCN5A 28 5302 A�G I1768V Sleep SUD Negative

24 M 12 W KCNE2 2 29 C�T T10M D85N-KCNE1, Exertion Syncope Negative

25 F 18 W KCNE2 2 161 T�C M54T Sleep SUD Negative

26 M 21 W RYR2 9 649 A�G I217Va G1885E-RYR2,
G1886S-RYR2,

Nonspecific Syncope Positive for SCD

(Continued on next page)
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TABLE 2. Continued

Case
No. Sex Age (y) Ethnicity Gene Exon Nucleotide change

Mutation (amino acid
change)

Nonsynonymous
polymorphisms SUD event

Sentinel
event Family history

27 M 2 W RYR2 10, 90 719 A�G, 12472 A�C H240R,b T4158Pb Exertion SUD Negative

28 F 35 W RYR2 14 1198 G�C D400Hb Nonspecific SUD Positive for SCD

29 M 9 H RYR2 14 1220 G�T R407Ib Nonspecific Syncope Negative

30 M 17 W RYR2 14 1258 C�T R420W Exertion Syncope Negative

31 F 22 W RYR2 14 1258 C�T R420W Nonspecific SUD Positive for SCD

32 M 36 W RYR2 41 6337 G�A V2113Mb Exertion SUD Negative

33 M 16 W RYR2 43 6680 G�T G2227Vb Nonspecific SUD Negative

34 M 5 W RYR2 44 6737 C�T S2246L G643S-KCNQ1,
D85N-KCNE1

Exertion SUD Negative

35 M 4 B RYR2 44 6739 C�T S2246L Exertion SUD Negative

36 F 25 W RYR2 47 7175 A�G Y2392C R1047L-KCNH2 Exertion SUD Positive for SCD

37 F 17 W RYR2 50 7528 A�G T2510Ab Nonspecific SUD Negative

38 M 17 W RYR2 86 11636 T�C L3879Pb Exertion Syncope Negative

39 F 9 W RYR2 87 11773 C�G Q3925Eb Exertion Seizures Negative

40 F 15 W RYR2 88 11876 C�T S3959Lb Exertion SUD Negative

41 M 18 W RYR2 90 12290 A�G N4097Sb Nonspecific SUD Positive for SCD

42 M 14 W RYR2 90 12436 G�A E4146Kb Sleep SUD Positive for SCD

43 F 34 B RYR2 93 13610 C�T R4497C Nonspecific SUD Positive for SCD

44 F 5 W RYR2 96 13933 T�A W4645R Exertion SVT Negative

45 F 8 W RYR2 104 14803 G�A G4936Rb Exertion Seizures Negative

a B � black; CA � cardiac arrest; F � female; H � Hispanic; M � male; SCD � sudden cardiac death; SUD � sudden unexplained death; SVT � sustained ventricular tachycardia; W � white.
b Novel to this cohort.
c Postpartum period.
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Postpartum period.
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specific event (n�52, 27 males [30.1%]) and exer-
tion (n�46, 30 males [26.6%]). In addition, 1 indi-
vidual (0.6%) experienced an auditory-triggered
sudden death, and 4 (2.3%) died suddenly during
extreme emotion. The distribution of triggers or
events was not statistically different between males
and females, respectively (sleep, 45.3% [48/106] vs
32.8% [22/67], P�.11; nonspecific, 25.5% [27/
106] vs 37.3% [25/67], P�.12; exertion, 28.3%
[30/106] vs 23.9% [16/67], P�.60).

Importantly, no decedent or relative had re-
ceived a clinical diagnosis of a suspected cardiac
channelopathy or heritable arrhythmia syndrome
(ie, LQTS or CPVT) before the SUD or at the time
necropsy tissue was received to commence the mo-
lecular autopsy. However, either a positive personal

itional SUD Patients Hosting Only a Common Functiona

Ethnicity Gene Nonsynonymous polymorphism

W KCNE1 D85N-KCNE1

W KCNE1 D85N-KCNE1

W KCNE1 D85N-KCNE1

W KCNE2 T8A-KCNE2

W KCNH2 R176W-KCNH2

W KCNH2 R1047L-KCNH2

W KCNH2 R1047L-KCNH2, S216L-SCN5A

W SCN5A S216L-SCN5A

B SCN5A S1103Y-SCN5A

B SCN5A S1103Y-SCN5A

H SCN5A S1103Y-SCN5A

W SCN5A R1193Q-SCN5A

H SCN5A V1951L-SCN5A

W SCN5A F2004L-SCN5A

W SCN5A P2006A-SCN5A

W RYR2 G1885E-RYR2

W RYR2 G1885E-RYR2

B RYR2 G1885E-RYR2

W RYR2 G1885E-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

W RYR2 G1886S-RYR2

t; F � female; H � Hispanic; M � male; SCD � sudden cardiac
Mayo Clin Proc. � June 2012;8
or family history of syncope, seizures, cardiac arrest,
near drowning or unexplained drowning (in a fam-
ily member), or prolonged QT interval was docu-
mented explicitly by the medical examiner in 70 of
the 173 cases (40.5%). A personal or family history
of syncope (n�25 [14.4%], personal history in
20) or seizures (n�13 [7.5%], personal history in
11) was identified. A family history of premature
SCD before 50 years of age, occurring before the
current patient’s SUD, was reported in 20 cases
(11.6%). A personal or family history of a cardiac
event occurring during the postpartum period
was reported in 6 cases. Status concerning per-
sonal history was not available in 7 cases (4.0%),
and family history information was unavailable in
12 cases (6.9%).

nsynonymous Channel Polymorphisma

SUD event
Sentinel
event Family history

Nonspecific SUD Positive for CA

Sleep Syncope Negative

Nonspecific SUD Negative

Sleep SUD Negative

Nonspecific Syncopeb Negative

Sleep SUD Positive for SCD

Sleep SUD Negative

Sleep SUD Negative

Sleep SUD Negative

Sleep SUD Negative

Emotion SUD Negative

Sleep Syncope Negative

Sleep SUD Negative

Nonspecific SUD Negative

Sleep SUD Negative

Emotion Seizures Negative

Sleep SUD Negative

Nonspecific SUD Negative

Exertion Syncope Positive for syncope

Sleep SUD Negative

Exertion SUD Positive for arrhythmias

Exertion Syncope Negative

Exertion SUD Positive for arrhythmias

Nonspecific SUD Negative

Exertion Syncope Negative

Nonspecific SUD Negative

Sleep SUD Negative

Sleep SUD Negative

; SUD � sudden unexplained death; W � white.
TABLE 3. Summary of Add l, No

Case
No. Sex Age (y)

46 M 27

47 M 17

48 M 46

49 F 43

50 F 30

51 M 15

52 M 20

53 M 21

54 M 1

55 F 2

56 M 15

57 M 19

58 M 18

59 M 21

60 M 1

61 F 16

62 M 38

63 M 19

64 M 12

65 M 2

66 M 12

67 F 12

68 M 18

69 M 18

70 F 4

71 F 8

72 M 30

73 M 12

a B � black; CA � cardiac arres death
b
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MOLECULAR AUTOPSY IN SUDDEN UNEXPLAINED DEATH
Spectrum and Prevalence of Rare, Putatively
Channelopathic Mutations in SUD
Overall, 45 rare, putative pathogenic mutations (20
RYR2 [44.5%, 14 novel], 11 KCNQ1 [24.5%, 4 novel],
6 KCNH2 [13.3%, 5 novel], 6 SCN5A [13.3%, 2
novel], and 2 KCNE2 [4.4%]) (Figures 1 and 2, and
Table 2) were identified in 45 cases (26.0%) of au-
topsy-negative SUD. Most of the mutations (n�40)
were missense, with only 5 (12.5%) radical muta-
tions (4 frameshift [2 KCNQ1, 2 KCNH2] and 1 splic-
ing error [KCNH2]). Two decedents hosted multiple mu-
tations (case 16, L799sp-KCNH2, T1107M-RyR2; case
27, H240R-RyR2, T4158P-RyR2). Mutations involv-
ing LQTS-associated genes (KCNQ1, KCNH2,
SCN5A, and KCNE2) were identified in 25 cases
(14.5%) overall compared with 21 cases (12.1%)
hosting mutations involving the CPVT1-associated
RYR2 gene.

Among the 11 mutation-positive SUDS cases (of
45) for which the families chose to participate in
genetic pedigree analysis, the SUD-associated muta-
tion was established as a familial mutation in every
family (4 RYR2, 4 KCNQ1, 1 KCNH2, 1 SCN5A, and
1 KCNE2) despite having no family history of car-
diac events in 10 of 11 cases (Table 2). One of the
decedents had a family history of SCD in a paternal
uncle. The SUD was the sentinel event in 8 of the 11
families. Among this small subset of participating
families, 3 of the decedents had a personal history of
syncope.

Besides these aforementioned rare putative chan-
nelopathic mutations, several common nonsynony-
mous, functional polymorphisms, previously associ-
ated with LQTS, Brugada syndrome, drug-induced
torsades de pointes, or ventricular arrhythmias or
SCD, were also identified (Figure 1 and Tables 2 and 3),
including G1886S-RyR235,36 (11 cases), G1885E-
RyR236 (5 cases), D85N-KCNE137 (5 cases, all males),
S1103Y-SCN5A38,39 (4 cases), R1047L-KCNH240

(3 cases), V1951L-SCN5A41 (2 cases), S216L-
SCN5A41,42 (2 cases), T8A-KCNE243 (2 cases),
R176W-KCNH244(1 case), G643S-KCNQ145 (1
case), R1193Q-SCN5A46,47 (1 case), F2004L-
SCN5A41 (1 case), and P2006A-SCN5A41,48 (1 case).
Common polymorphisms with a heterozygous
frequency greater than 20%, including K897T-
KCNH2, H558R-SCN5A, G38S-KCNE1, and
Q2958R-RyR2, and less common polymorphisms
lacking functional data to suggest proarrhythmic sus-
ceptibility (DUP 52-54 API-KCNQ1 [1 case], K393N-
KCNQ1 [1 case], P448R-KCNQ1 [1 case], V648I-
KCNQ1 [1 case], R148W-KCNH2 [1 case],
R18W-SCN5A [1 case], S1787N-SCN5A [1 case],
A1136V-RyR2 [3 cases], and R4037C-RyR2 [1
case]) have been excluded from Figure 1 and Ta-

bles 2 and 3.
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Most of these polymorphisms do not appear to
e overrepresented within this SUD cohort. How-
ver, the common proarrhythmic and sudden
eath–associated SCN5A polymorphism S1103Y38

with an expected heterozygote frequency of 13%
among healthy black controls was present in 3 of 9
black (33.3%) and 1 of 6 Hispanic (16.7%) SUD
patients. The drug-induced LQT- and arrhythmia-
associated D85N-KCNE1 polymorphism was iden-
tified in 5 of 154 (3.2%, all male) white SUD patients
compared with the expected prevalence of 1.0% in
the general white population.33 Interestingly, al-
though only 40.5% (70/173) of the overall cohort
died during sleep, 77.8% (7/9) putative, pathogenic
mutation–negative SUD patients, who were identi-
fied as having an SCN5A functional polymorphism
(S216L, S1103Y, R1193Q, V1951L, F2004L, and
P2006A), died during sleep (P�.04).

Importantly, although these proarrhythmic
channel polymorphisms may have contributed to
the patient’s death, we excluded them from the cal-
culations of SUD molecular autopsy yield and from
the genotype-phenotype correlative studies detailed
below. Accordingly, the 26.0% prevalence of chan-
nelopathy-mediated sudden death in this autopsy-
negative SUD cohort could be underestimated.
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FIGURE 3. The percent distribution of mu-
tations identified in the catecholaminergic
polymorphic ventricular tachycardia (CPVT)–
associated RYR2 gene compared with muta-
tions identified in the long QT syndrome
(LQTS)–associated genes for the 19 muta-
tion-positive males and the 26 mutation-pos-
itive females. The numbers in the bars repre-
sent the numbers of cases with a mutation.
For example, 11 of 19 (57.9%) mutation-
positive males had a CPVT-associated RYR2
mutation compared with 8 males (42.1%)
who had a mutation in an LQTS-associated
gene (KCNQ1, KCNH2, SCN5A, KCNE1, or
KCNE2).
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Genotype-Phenotype Correlations

Effect of Sex and Age on Yield. Female SUD pa-
tients (26/67, 38.8%) were more likely to host a
channel mutation than male patients (19/106,
17.9%; P�.004). Moreover, mutation-positive fe-
males were more likely to host an LQTS-associated
mutation rather than a CPVT1-associated RYR2 mu-
tation (65.4% [17/26] LQTS vs 34.6% [9/26]
CPVT), whereas mutation-positive males were more
likely CPVT1 positive (57.9% [11/19]) than LQTS
mutation positive (42.1% [8/19], Figure 3). In fact,
the distribution of genes hosting mutations was dif-
ferent between females and males (Figure 4). Specif-
ically, although 57.9% (11/19) of the mutations
seen in males were in RYR2, only 34.6% (9/26) of
the mutations in females involved RYR2. In females,
23.1% (6/26) of the mutations identified involved
KCNH2, whereas 0 of 19 male SUD patients had a
KCNH2 mutation (P�.03).

The yield of the molecular autopsy was not differ-
ent between SUD patients who were 1 to 20 years of
age (32/118, 27.1%) compared with decedents older
than 20 years (13/55, 23.6%; P�.71; Figure 5). Albeit
small in number, none of the 3 SUD cases (1 female
and 2 male) who were older than 50 years at the time of
death were mutation positive. At all age groups, a trend
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was seen toward a higher mutation detection yield in
females, with the highest differential occurring in the
11- to 20-year range (12/25, 48.0% in females vs 9/50,
18.0% in males; P�.01).

Effect of Event or Trigger on Yield. The mutation
detection yield was associated with the circum-
stance (events or triggers) surrounding the death,
with the highest yield occurring in those with a
documented exertional trigger (34.8% [16/46])
compared with a nonspecific trigger (26.9% [14/
52]) or death during a period of sleep (18.6% [13/
70], Figure 6). This trend held true for females and
males, with females consistently having a higher
yield than males within the 3 event or trigger cate-
gories (exertion, 50.0% [8/16] vs 26.7% [8/30],
P�.19; nonspecific trigger, 36.0% [9/25] vs 18.5%
[5/27], P�.21; sleep, 31.8% [7/22] vs 12.5% [6/48],
P�.09). Again, however, because of the relatively
small sizes in each of these event or trigger subsets,
these sex and event or trigger trends did not achieve
statistical significance.

Although cases of exercise-related SUD had the
highest mutation detection rate overall, an interest-
ing age effect emerged when examining the yield in
specific triggered event categories in different age
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groups. Overall, SUD patients aged 1 to 10 years
with an exertion-induced death had a mutation de-
tection yield (8/12, 66.7%) that was significantly
higher than that of 11- to 20-year-olds with exer-
tion-induced death (4/27, 14.8%; P�.002). In con-
trast, for those with death during a period of sleep,
the 11- to 20-year-olds had a higher yield (9/25,
36.0%) than the 1- to 10-year-olds (1/24, 4.2%;
P�.01; Figure 7).

The mutation-positive gene distribution among
females (62.5% [5/8] RYR2 and 37.5% [3/8] KCNQ1)
and males (75.0% [6/8] RYR2, 12.5% [1/8] SCN5A,
and 12.5% [1/8] KCNE2) with exertion was sim-
ilar and somewhat anticipated based on previous
studies showing KCNQ1 LQTS susceptibility mu-
tations and RYR2 CPVT susceptibility mutations
most often associated with exertion. Interestingly,
although the gene distribution among females
(42.9% [3/7] SCN5A, 42.9% [3/7] KCNH2, and
14.3% [1/7] KCNE2) with SUD during sleep corre-
lated with previous observations that suggested that
KCNQ1 and RYR2 mutations are infrequently asso-
ciated with periods of rest and that SCN5A muta-
tions are associated more frequently with cardiac
events during rest, the male gene distribution was
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nd unanticipated (83.3% [5/6] KCNQ1 and
16.7% [1/6] RYR2, Figure 8).

Effect of Personal History and Positive Family His-
tory on Yield. As anticipated, the mutation detec-
tion yield was significantly higher in patients with
SUD who had either a positive personal or family
history of cardiac events when compared with those
in whom no personal or family history was elicited
or documented (37.1% [26/70] vs 19.1% [17/89];
P�.01; Figure 9). Moreover, nearly half (45.0% [9/
20]) of patients with SUD who had a positive family
history of premature SCD and who were younger
than 50 years had a positive cardiac channel molec-
ular autopsy with identification of a rare, potentially
channelopathic mutation.

DISCUSSION
Postmortem genetic testing (the cardiac channel
molecular autopsy) has not yet been transformed
fully from a research-based effort into a routine,
standard part of the conventional autopsy when the
coroner, medical examiner, or forensic pathologist
is faced with a case of SUD in the young. However,
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Association for European Cardiovascular Pathology,
have strongly recommended postmortem genetic
analysis in both structural and nonstructural genet-
ically determined heart disease as part of the
requirements for the adequate postmortem assess-
ment of SCD. In 2008, members of the Trans-Tas-
man Response AGAinst sudden Death in the Young
(TRAGADY), endorsed by the Royal College of Pa-
thologists of Australasia, put forward guidelines to
ensure standardization of autopsy practice in young
sudden unexpected deaths, ancillary testing, and re-
tention of appropriate material for all cases of SCD
to be used for genetic testing. In 2011, the Heart
Rhythm Society and the European Heart Rhythm
Association provided an expert consensus statement
on the state of genetic testing, providing consensus-
based guidelines and recommendations for post-
mortem genetic testing in cases of SUD.20 Accord-
ingly, the key recommendations of the Heart
Rhythm Society/European Heart Rhythm Associa-
tion guidelines state that “in the setting of autopsy
negative SUD, comprehensive or targeted (KCNQ1,
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ay be considered in an attempt to establish prob-
ble cause and manner of death and to facilitate
he identification of potentially at-risk relatives
nd is recommended if circumstantial evidence
oints toward a clinical diagnosis of LQTS or
PVT specifically.”

Unfortunately, for several reasons, it has been
extremely difficult for the medical examiner, cor-
oner, or forensic pathologist to provide this level
of care. Perhaps chief among the reasons is that
insurance companies or other third-party payers
largely do not accept any responsibility for pro-
viding coverage for the molecular autopsy of a
deceased person, regardless of the implications to
surviving relatives. This position, not surprisingly,
limits postmortem genetic testing to only families
who can afford the out-of-pocket expense for com-
mercially available genetic testing because few
medical examiner offices have the internal budget
to cover such a molecular autopsy. Alternatively,
the medical examiner, coroner, or forensic pa-
thologist and the grieving family are left with the
option of enrolling the deceased’s sample into re-
search-based genetic testing, where although the
price is right (ie, free), the process can be pain-
fully slow.49 Given the expensive and time-con-
suming nature of postmortem genetic testing, it is
currently necessary for the medical examiner, cor-
oner, or forensic pathologist to be case selective in
pursuing a molecular autopsy.50

In 2007, we completed our original molecular
utopsy series of 49 medical examiner–referred
ases of autopsy-negative SUD.23 Comprehensive

mutational analysis of all 60 translated exons in the
LQTS-associated genes, KCNQ1, KCNH2, SCN5A,
KCNE1, and KCNE2, along with targeted analysis of
the CPVT1-associated RYR2-encoded cardiac ryan-
odine receptor revealed that more than one-third of
SUD cases hosted a seemingly pathogenic cardiac
channel mutation.22 We have extended this cohort
to now include more than 170 cases of SUD to pro-
vide a more extensive analysis to better define the
expected yield of mutation detection and offer pos-
sible genotype-phenotype correlations that may as-
sist in guiding phenotype-directed mutation detec-
tion efforts in future cases of SUD.

In this expanded molecular analysis of 173 SUD
cases, we provide molecular evidence that suggests
that just more than one-fourth (26.0%) of these
SUD cases host putative pathogenic mutations in
critical ion channel genes associated with the poten-
tially lethal arrhythmia syndromes LQTS and CPVT.
Besides these 26.0% of cases that host putative
pathogenic mutations, another 16.2% of this cohort
hosted nonsynonymous, amino acid–altering, func-
tional polymorphisms previously associated with
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de pointes, or ventricular arrhythmias or SCD poly-
morphisms. Thus, the overall contribution of chan-
nelopathies or sudden death–predisposing or proar-
rhythmic, functional channel polymorphisms is
likely underestimated in this study. For example, we
excluded 10 SUD patients (5.8%) who were positive
for D85N-KCNE1, R1047L-KCNH2, or S1103Y-
SCN5A. These proarrhythmic polymorphisms have
been associated convincingly with increased risk for
sudden death, particularly in the setting of drugs with
an unwanted QT-prolonging effect. Despite our ef-
forts, we were unable to elicit a reliable history of pre-
event medication exposures to determine whether a
case for drug exposure plus functional polymorphism
could be made. Nevertheless and perhaps more im-
portantly than this overall point estimate for the yield
of such postmortem genetic testing in the setting of an
SUD, this cohort has provided us with several interest-
ing genotype-phenotype observations that may pro-
vide insight into the expected yields of postmortem
genetic testing for SUD and assist in selecting cases
with the greatest potential for mutation discovery and
directing genetic testing efforts.

Interestingly, although males represented two-
thirds of the cohort, females were more likely to host
a channel mutation than males, especially if the SUD
was during adolescence (48.0% females vs 18.0%
males). Moreover, there was a cardiac channelopa-
thy–sex effect, with two-thirds of the mutation-posi-
tive females having an LQTS-associated mutation
compared with only one-third having a CPVT-associ-
ated RYR2 mutation, whereas mutation-positive males
most often had a CPVT (approximately 60%) mutation
rather than an LQTS mutation (approximately 40%).
On average, males who had mutations in LQTS- or
CPVT-associated genes were younger than females
who were genotype positive. This sex predilection is
consistent with previous work by Priori et al,51 in
which among their cohort of 30 CPVT index cases,
most of the RYR2 mutations were identified in young
males (11/13 [85%]) compared with females (3/17
[18%]), and male sex in RYR2-mediated CPVT was
associated with a relative risk of 4.2 (95% confidence
interval, 1.2-15) of developing syncope compared
with females. Accordingly, one might a priori expect a
higher yield of LQTS-associated mutation detection in
a female adolescent or young adult compared with a
higher expected yield of CPVT-associated mutations
among prepubertal boys.

The circumstances surrounding the death also
had an effect on the mutation detection yield, in
which decedents had the highest mutation detection
rate when the death was associated with exertion
compared with a nonspecific triggered death or
death during sleep. This trend held true for females
and males, with females consistently having higher

yields than males within the 3 event or trigger cate- m

Mayo Clin Proc. � June 2012;87(6):524-539 � http://dx.doi.org/10.10
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ories. Although half of all females and 26.7% of
ales with exercise-associated sudden death were

dentified as mutation positive, only 31.8% and
2.5%, respectively, had mutations when the death
ccurred during sleep. However, an interesting age
ffect was revealed when examining the effect on
ield when comparing exercise-induced death with
eath during sleep. For example, 71.4% of the 1- to
0-year-old girls with exercise-induced death were
ound to be mutation positive compared with 0% of
he 1- to 10-year-old girls found dead in bed. Con-
ersely, although only 14.3% (1 of 7) of 11- to 15-
ear-old girls with exercise-induced death were mu-
ation positive, three-fourths of the adolescent girls
ith death during sleep were identified as mutation
ositive. Although failing to reach statistical signifi-
ance, this trend was also observed among males.

Previously, specific genotype-phenotype associ-
tions in LQTS have been established, suggesting
elatively gene-specific triggers.52 Exertion-induced
ardiac events are associated strongly with muta-
ions in KCNQ1 (LQT1), whereas auditory triggers
nd events occurring during the postpartum period
ost often occur in patients with LQT2 (KCNH2).
lthough exertion- or emotional stress–induced
vents are most common in LQT1 (KCNQ1), events
ccurring during periods of sleep or rest are most com-
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manifests with exercise-induced syncope or sudden
death51 and rarely manifests during periods of rest.

These particularly well-vetted genotype-pheno-
type associations have led some investigators to se-
lectively direct genetic testing efforts based on trig-
ger-associated events, particularly in LQTS cases.53

For example, if an LQTS individual presents with
exertion-induced syncope or cardiac arrest, then a
genetic test for KCNQ1 (LQT1) mutations should be
performed. If the syncope or cardiac arrest occurred
during periods of rest or sleep, then a test for SCN5A
(LQT3) should be performed. Although the ob-
served mutation-positive gene distribution in this
SUD cohort matched the anticipated results for
those males and females with exercise-induced
death (ie, overwhelmingly RYR2 or KCNQ1 muta-
tions) and females with death during sleep (ie,
mostly SCN5A and no RYR2 or KCNQ1 mutations),
strikingly and unexpectedly, all of the mutation-
positive males with death during sleep had muta-
tions in either KCNQ1 (83.3%) or RYR2 (16.7%).

Both LQTS and CPVT are hereditary disorders
that manifest within families with potential warning
signs, such as syncope, seizures, survived cardiac
arrest, near drowning, or prolonged QT interval,
that may lead to a clinical diagnosis of the disorder
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and circumvent the sudden death of a prophylacti- h
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ally treated family member. However, tragically
hese particular warning signs often go unheeded or
nrecognized as evident by the remarkable presence
f a positive family history of cardiac events in
0.5% of our SUD cohort, including nearly 11.6%
f the patients with a positive family history of a
rior sudden death. Yet, no decedent or relative had
eceived a clinical diagnosis of a suspected cardiac
hannelopathy or heritable arrhythmia syndrome
ie, LQTS or CPVT) before the SUD of the current
atient in our study. As expected, SUD cases with
uch a positive personal or family history had a sig-
ificantly higher mutation detection yield (37.1%)
han those with no personal or family history
19.1%) of cardiac events. In fact, among the subset
f patients with a positive family history of other-
ise unexplained sudden death before the age of 50
ears, nearly half were positive for a putative chan-
elopathic mutation.

Interestingly, there was a trend toward a higher
utation detection yield in SUD patients with a per-

onal or family history of syncope compared with a
istory of seizures. Although not as common as syn-
ope, seizure-like symptoms are experienced by
ome patients with LQTS or CPVT. Our data suggest
hat SUD in an individual with a personal or family
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neurologic disorder, akin to SUD in epilepsy
(SUDEP), rather than as a result of a primarily car-
diogenic disorder, such as LQTS or CPVT.

Although mutations in LQTS and CPVT genes
have been illustrated as the pathogenic basis from
some SUDEP cases, most SUDEP appears to not be
related to mutations in major genes associated with
theses 2 disorders. In 2010, Tu et al54 analyzed a
cohort of 68 SUDEP cases for mutations in 3 major
LQTS genes (KCNQ1, KCNH2, and SCN5A) and
only identified 2 patients (3%) with putative patho-
genic mutations (R176W-KCNH2 and P1090L-
SCN5A), which were absent in their control popu-
lation. However, both of these genetic variants have
been observed in other control populations and rep-
resent functionally significant polymorphisms that
confer an increased risk for arrhythmia.32,33 To-
gether, these data suggest that sudden death cases
with a personal or family history of seizures may
warrant mutational analysis of ion channel encoding
genes, such as SCN1A and KCNA1, which are abun-
dantly expressed in the brain and have been impli-
cated as candidates for SUDEP,55,56 rather than
starting with an initial interrogation of LQTS- and
CPVT-associated genes. Whether our genotype-
negative SUD cases with a personal or family history
of seizure activity have mutations in these SUDEP
candidate genes is currently unknown. In contrast, a
personal or family history of unexplained syncope,
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especially exercise-induced syncope, may reflect a

Mayo Clin Proc. � June 2012;87(6):524-539 � http://dx.doi.org/10.10
www.mayoclinicproceedings.org
strong indicator for LQTS and CPVT genetic testing
for the SUD case.

Although a positive personal or family history is
associated with a 2-fold greater likelihood of a pos-
itive postmortem genetic test result than when there
is no history, a negative personal or family history
alone should not preclude genetic testing with the
intent to identify mutations that may be familial and
therefore provide an increased risk for sudden death
of an unsuspecting surviving family member of the
decedent. In fact, among the 11 mutation-positive
SUD families that chose to participate in genetic
pedigree analysis in our study, all 11 SUD cases were
identified as having a familial mutation, rather than
a sporadic one, despite having a negative personal or
family history of cardiac events in 72.7% (8/11) of
these families, enabling personal risk stratification
and prophylactic therapies for the mutation-positive
family members who are still living.

The major limitation of this study pertains to the
issue of mutation calling.34 Although most mutations
identified in this study are either radical (ie, frameshift
or splicing errors) or localize to critical ion channel
domains (ie, transmembrane region or channel pore
regions), with a predicted probability of pathogenicity
exceeding 90%, most mutations identified in this
study, in particular those that are novel, have not been
characterized functionally. Heterologous expression
studies for every ion channel variant identified to as-
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Instead, strict absence from our internal set of eth-
nic-matched reference alleles was required. Never-
theless, it is possible that some of these variants
listed as putative pathogenic mutations may be in-
nocuous functionally. Therein lies the difficulty in
determining the “actionableness” of these rare, non-
functionally characterized genetic variants for sur-
viving family members when the probability of
pathogenicity for that given variant is not 100%.
However, this issue of mutation calling is present in
premortem genetic testing as well and underscores the
reality that, whether the patient is dead or alive, a ge-
netic test result must be interpreted with great caution.

CONCLUSION
More than one-fourth of autopsy-negative SUD cases
may stem from either LQTS- or CPVT-associated
channelopathic mutations. A cardiac channel molecu-
lar autopsy should be considered as a standard part of
the evaluation of autopsy-negative SUD, especially
among children with exercise-induced SUD, adoles-
cent girls, and those with a positive personal or family
history of cardiac events. A 2-tiered approach starting
with the LQTS-susceptibility genes for female patients
with SUD and the CPVT susceptibility genes for males
with SUD may be prudent.

Abbreviations and Acronyms: CPVT � catecholaminergic
polymorphic ventricular tachycardia; LQTS � long QT syn-
drome; SCD � sudden cardiac death; SUD � sudden un-
explained death; SUDEP � sudden unexplained death in
epilepsy
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